Math 247A Lecture 10 Notes

Daniel Raban

January 29, 2020

1 Characterization of A_p Weights

1.1 A_p weights for p > 1

Last time, we began to tackle the problem of characterizing nonnegative measures μ for which

$$\int |Mf(y)|^p \, d\mu(y) \lesssim |f(y)|^p \, d\mu(p).$$

uniformly for $f \in L^p(d\mu)$ and some 1 . We will not prove the full details, but we will give a compelling intuition of the results.

Fix $1 . Recall that a locally integrable weight <math>\omega : \mathbb{R}^d \to [0, \infty)$ satisfies the A_p condition if there is an A > 0 such that

$$\sup_{\text{balls } B} \frac{1}{|B|} \int_B \omega(y) \, dy \left[\frac{1}{|B|} \int_B \omega^{-p'/p}(y) \, dy \right]^{p/p'} \le A.$$

This is equivalent to

$$\sup_{\text{balls } B} |B|^{-p} \omega(B) \| \omega^{-1/(p-1)} \|_{L^1(\mathbb{R})}^{p-1} \le A.$$

Remark 1.1. If $1 , then <math>A_p \subseteq A_q$: Let $\omega \in A_p$. Then by Hölder,

$$\begin{split} \|\omega^{-1/(q-1)}\|_{L^{1}(B)} &\leq \|\omega^{-1/q-1}\|_{L^{(q-1)/(p-1)}}|B|^{1-(p-1)/(q-1)} \\ &= \|\omega^{-1/(p-1)}\|_{L^{1}(B)}^{(p-1)/(q-1)}|B|^{(q-p)/(q-1)}. \end{split}$$

So we get

$$|B|^{-q}\omega(B)\|\omega^{-1/(q-1)}\|_{L^{1}(B)}^{q-1} \le |B|^{-p}\omega(B)\|\omega^{-1/(p-1)}\|_{L^{1}(B)}^{p-1} \le 1$$

uniformly in B.

Lemma 1.1. Fix $1 \le p < \infty$. Then $\omega \in A_p$ if and only if

$$\left[\frac{1}{|B|}\int_B f(y)\,dy\right]^p \lesssim \frac{1}{\omega(B)}\int_B |f(y)|^p \omega(y)\,dy,$$

uniformly in $f \ge 0$ and balls B.

We proved this last time for p = 1.

Proof. It remains to consider 1 . $(<math>\implies$):

$$\begin{split} \left[\frac{1}{|B|}\int_B f(y)\,dy\right]^p &= \left[\frac{1}{|B|}\int_B f(y)\omega^{1/p-1/p}\,dy\right]^p \\ &\leq |B|^{-p}\int |f(y)|^p\omega(y)\,dy\int_B\underbrace{\left[\omega(y)^{-p'/p}\,dy\right]}_{\lesssim |B|^{p\cdot1/\omega(B)}} \\ &\lesssim \frac{1}{\omega(B)}\int_B |f(y)|^p\omega(y)\,dy. \end{split}$$

(<=): Fix $\varepsilon > 0$ and a ball B. Let $f = (\omega + \varepsilon)^{-p'/p}$. Then

$$\begin{split} \left[\frac{1}{|B|}\int_{B}(\omega+\varepsilon)^{-p'/p}(y)\,dy\right]^{p} &\lesssim \frac{1}{\omega(B)}\int_{B}(\omega+\varepsilon)^{-p'}(y)\omega(y)\,dy\\ &\lesssim \frac{1}{\omega(B)}\int(\omega+\varepsilon)^{-p'+1}(y)\,dy \end{split}$$

Note that p' - 1 = -p'/p.

$$\lesssim \frac{1}{\omega(B)} \int_B (\omega + \varepsilon)^{-p'/p}(y) \, dy.$$

 So

$$|B|^{-p}\omega(B)\left[\int_B (\omega+\varepsilon)^{-p'/p}(y)\,dy\right]^{p/p'} \lesssim 1$$

uniformly in B and $\varepsilon > 0$. Let $\varepsilon \to 0$ and use the monotone convergence theorem **Corollary 1.1.** Fix $1 \le p < \infty$. If $\omega \in A_p$, then ω is a doubling measure. Proof. Let B = B(x, 2r) and $f = \mathbb{1}_{B(x,r)}$. Then

$$\left[\frac{|B(x,r)|}{|B(x,2r)|}\right]^p \lesssim \frac{\omega(B(x,r))}{\omega(B(x,2r))}$$

uniformly in $x \in \mathbb{R}^d$ and r > 0.

Remark 1.2. In fact, A_p weights with $1 \le p < \infty$ satisfy a "fairness condition": If $F \subseteq B$, then taking $f = \mathbb{1}_F$, we get

$$\left[\frac{|F|}{|B|}\right]^p \lesssim \frac{\omega(F)}{\omega(F)}$$

So if F is a large chunk of the ball B, ω has to give a large proportion of the measure of the ball to F; it has to treat F fairly.

1.2 Proof sketch of characterization

Theorem 1.1. Fix $1 . Then <math>\omega \in A_p$ if and only if

$$\int |Mf(y)|^p \omega(y) \, dx \lesssim \int |f(y)|^p \omega(y) \, dy$$

uniformly for $f \in L^p(\omega \, dx)$ (that is, $M : L^p(\omega \, dx) \to L^p(\omega \, dx)$ boundedly).

This answers the question we proposed but only in the case that ω is a weight; i.e. ω is absolutely continuous with respect to Lebesgue measure.

Remark 1.3. (\Leftarrow): The necessity holds under even weaker assumptions. If $M : L^p(\omega \, dx) \to L^{p,\infty}(\omega \, dx)$ boundedly, then $\omega \in A_p$.

Proof. (\Leftarrow): Fix a ball B of radius r > 0. Fix $\varepsilon > 0$, and let $f = (\omega + \varepsilon)^{-p'/p} \mathbb{1}_B$. For $x \in B$,

$$Mf(x) = \sup_{R>0} \frac{1}{|B(x,R)|} \int_{B(x,R)} (\omega + \varepsilon)^{-p'/p} \mathbb{1}_B(x) dx$$
$$\geq \frac{1}{|B(x,2r)|} \int_B (\omega + \varepsilon)^{-p'/p}(y) dy$$
$$= \frac{1}{2^d |B|} \int_B (\omega + \varepsilon)^{p'/p}(y) dy$$

Let's give this a name

 $=: 2\lambda.$

Now

$$\begin{split} \omega(B) &\leq \omega(\{x: Mf(x) > \lambda\}) \\ &\lesssim \frac{\int_B (\omega + \varepsilon)^{-p'}(y)\omega(y)\,dy}{\lambda^p} \\ &\lesssim \frac{\int_B (\omega + \varepsilon)^{-p'/p}(y)\,dy}{[\int_B (\omega + \varepsilon)^{-p'/p}(y)\,dy]^p}. \end{split}$$

So we get that

$$|B|^{-p}\omega(B)\left[\int_{B}(\omega+\varepsilon)^{p'/p}(y)\,dy\right]^{p/p'} \lesssim 1.$$

Remark 1.4. (\implies): The sufficiency, that is, $\omega \in A_p \implies M$ is bounded on $L^p(\omega dx)$, rests on three ingredients:

1. If $1 \le q < \infty$, then $M : L^q(\omega \, dx) \to L^{q,\infty}(\omega \, dx)$ boundedly (this is Homework exercise 10). Look at

$$M_{\omega}f(x) = \sup_{r>0} \frac{1}{\omega(B(x,r))} \int_{B(x,r)} |f(y)|\omega(y) \, dy.$$

Then $M_{\omega}: L^1(\omega \, dx) \to L^{1,\infty}(\omega \, dx)$ boundedly. Then

$$\left|\frac{1}{|B|}\int_B f(y)\,dy\right|^p \lesssim \frac{1}{\omega(B)}\int_B |f(y)|^p \omega(y)\,dy,$$

which tells us

$$|Mf|^p \lesssim M_\omega(|f|^p).$$

2. (Appears in Ch5 of Stein's Harmonic Analysis textbook¹) A reverse Hölder inequality: If $\omega \in A_{\infty} = \bigcup_{1 \le p < \infty} A_p$, then there exist and r > 1 and c > 0 (both depending on ω) such that

$$\left[\frac{1}{|B|}\int_{B}\omega^{r}(y)\,dy\right]^{1/r} \leq \frac{c}{|B|}\int_{B}\omega(y)\,dy \iff |B|^{1/r'}\|\omega\|_{L^{r}(B)} \leq c\|\omega\|_{L^{1}(B)}.$$

This implies that if $\omega \in A_p$, then $\omega \in A_q$ for some q < p.

Ingredients 1 and 2 give $M : L^q(\omega \, dx) \to L^{q,\infty}(\omega \, dx)$ boundedly for some q < p.

3. The Marcinkiewicz interpolation theorem with $M : L^{\infty}(\omega \, dx) \to L^{\infty}(\omega \, dx)$ (use the fact that $|E| = 0 \iff \omega(E) = 0$ since $\omega > 0$ a.e. as $\omega \in A_p$).

Next time, we will discuss how this generalizes to arbitrary measures, not just ones absolutely continuous with respect to Lebesgue measure.

¹This book is the bible of Harmonic Analysis.